The complex fuzzy system forecasting model based on fuzzy SVM with triangular fuzzy number input and output

نویسندگان

  • Qi Wu
  • Rob Law
چکیده

This paper presents a new version of fuzzy support vector machine to forecast the nonlinear fuzzy system with multi-dimensional input variables. The input and output variables of the proposed model are describedas triangular fuzzynumbers. Thenby integrating the triangular fuzzy theory andv-support vector regression machine, the triangular fuzzy v-support vector machine (TFv-SVM) is proposed. To seek the optimal parameters of TFv-SVM, particle swarm optimization is also applied to optimize parameters of TFv-SVM. A forecastingmethod based on TFv-SVRM and PSO are put forward. The results of the application in sale system forecasts confirm the feasibility and the validity of the forecasting method. Compared with the traditional model, TFv-SVM method requires fewer samples and has better forecasting precision. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Forecasting of Iran Natural Gas Consumption Based On Neural-Fuzzy System Until 2020

In this paper, an Adaptive-Network-based Fuzzy Inference System (ANFIS) is used for forecasting of natural gas consumption. It is clear that natural gas consumption prediction for future, surly can help Statesmen to decide more certain. There are many variables which effect on gas consumption but two variables that named Gross Domestic Product (GDP) and population, are selected as two input var...

متن کامل

Fuzzy support vector regression machine with penalizing Gaussian noises on triangular fuzzy number space

In view of the shortage of e-insensitive loss function for Gaussian noise, this paper presents a new version of fuzzy support vector machine (SVM) which can penalize Gaussian noise to forecast fuzzy nonlinear system. Since there exist some problems of finite samples and uncertain data in many forecasting problem, the input variables are described as crisp numbers by fuzzy comprehensive evaluati...

متن کامل

Predicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm

Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...

متن کامل

Fuzzy linear regression model with crisp coefficients: A goal programming approach

The fuzzy linear regression model with fuzzy input-output data andcrisp coefficients is studied in this paper. A linear programmingmodel based on goal programming is proposed to calculate theregression coefficients. In contrast with most of the previous works, theproposed model takes into account the centers of fuzzy data as animportant feature as well as their spreads in the procedure ofconstr...

متن کامل

SYMMETRIC TRIANGULAR AND INTERVAL APPROXIMATIONS OF FUZZY SOLUTION TO LINEAR FREDHOLM FUZZY INTEGRAL EQUATIONS OF THE SECOND KIND

In this paper a linear Fuzzy Fredholm Integral Equation(FFIE) with arbitrary Fuzzy Function input and symmetric triangular (Fuzzy Interval) output is considered. For each variable, output is the nearest triangular fuzzy number (fuzzy interval) to the exact fuzzy solution of (FFIE).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011